InGaAs MOSFET Electronics

J. A. del Alamo

Microsystems Technology Laboratories, MIT

The 17th International Symposium Physics of Semiconductors and Applications

Jeju, Korea, December 7-11, 2014

Acknowledgements:

- D. Antoniadis, A. Guo, L. Guo, D.-H. Kim, T.-W. Kim, D. Jin, J. Lin, W. Lu, A. Vardi, N. Waldron, L. Xia
- Sponsors: Intel, FCRP-MSD, ARL, SRC, NSF, Sematech, Samsung
- Labs at MIT: MTL, NSL, SEBL

InGaAs electronics in your pocket!

A bit of perspective...

- Invention of AIGaAs/GaAs HEMT: Fujitsu Labs. 1980
- First InAlAs/InGaAs HEMT on InP: Bell Labs. 1982
- First AlGaAs/InGaAs Pseudomorphic HEMT: U. Illinois 1985
- Main attraction of InGaAs: RT $\mu_e = 6,000 \sim 30,000 \text{ cm}^2/\text{V.s}$

Mimura, JJAPL 1980

Chen, EDL 1982

Ketterson, EDL 1985

InGaAs High Electron Mobility Transistor (HEMT)

Modulation doping:

→ 2-Dimensional Electron Gas in narrow-bandgap channel

Highest f_T of any FET on any material system

InGaAs HEMTs: circuit demonstrations

9-stage 850 GHz LNA

Deal, MTT-S 2014

Sarkozy, IPRM 2013

80 Gb/s multiplexer IC

Wurfl, GAAS 2004

25 Gb/s wireless data at 113 GHz

Thome, MTT-S 2014

InGaAs HEMTs map infant universe

WMAP=*Wilkinson Microwave Anisotropy Probe* Launched 2001

Full-sky map of Cosmic Microwave Background radiation (oldest light in Universe) \rightarrow age of Universe: 13.73B years (±1%)

http://map.gsfc.nasa.gov/

0.1 µm InGaAs HEMT LNA Pospieszalski, MTT-S 2000

Record f_T InGaAs HEMTs: megatrends

- Classic scaling trajectory: L_g↓, t_{ins}↓
- Recently: L_g , t_{ins} saturated \rightarrow no more progress possible?

Limit to HEMT barrier scaling: gate leakage current

At L_g=30-40 nm, modern HEMTs are at the limit of scaling!

Solution: introduce gate oxide!

Need high-K gate dielectric: **HEMT** → **MOSFET!**

InGaAs MOSFET with $f_T = 370$ GHz

- Channel: 10 nm In_{0.7}Ga_{0.3}As
- Barrier: 1 nm InP + 2 nm AI_2O_3

- $L_g = 60 \text{ nm}$
- f_T = 370 GHz
- $g_m = 2 \text{ mS/}\mu\text{m}$

Kim, APL 2012

InGaAs HEMT vs. MOSFET

Since when can we make III-V MOSFETs?

Historical evolution: InGaAs MOSFETs vs. HEMTs

Transconductance (g_m) :

Recent progress due to improvement of oxide/III-V interface

What made the difference? Atomic Layer Deposition (ALD) of oxide

ALD eliminates native oxides that pin Fermi level

→ "Self cleaning"

- First observed with Al₂O₃, then with other high-K dielectrics
- First seen in GaAs, then in other III-Vs

Interface quality: Al₂O₃/InGaAs vs. Al₂O₃/Si

Al₂O₃/InGaAs

Close to E_c , $AI_2O_3/InGaAs$ comparable D_{it} to AI_2O_3/Si interface

Electron velocity: InGaAs vs. Si

Measurements of electron injection velocity in HEMTs:

- v_{ini}(InGaAs) increases with InAs fraction in channel
- v_{inj} (InGaAs) > $2v_{inj}$ (Si) at less than half V_{DD}
- ~100% ballistic transport at L_g~30 nm

Logic InGaAs MOSFET: possible designs

Enhanced gate control \rightarrow enhanced scalability

Self-aligned Planar InGaAs MOSFETs

Lin, IEDM 2012, 2013, 2014

Recess-gate process:

- CMOS-compatible
- Refractory ohmic contacts (W/Mo)
- Extensive use of RIE

Fabrication process

Lin, EDL 2014

- Ohmic contact first, gate last
- Precise control of vertical (~1 nm), lateral (~5 nm) dimensions
- MOS interface exposed late in process

L_g=20 nm InGaAs MOSFET

L_g = 20 nm, L_{access}= 15 nm MOSFET → tightest III-V MOSFET ever made?

Lin, IEDM 2013

Highest performance InGaAs MOSFET

 $L_g = 80 \text{ nm}, \text{ EOT} = 0.5 \text{ nm} (2.5 \text{ nm HfO}_2), t_c = 9 \text{ nm}, L_{access} = 15 \text{ nm}$

• Record $g_{m,max} = 3.1 \text{ mS}/\mu\text{m}$ at $V_{ds} = 0.5 \text{ V}$

•
$$R_{on} = 190 \ \Omega.\mu m$$

Lin, IEDM 2014

Subthreshold characteristics

 $L_g = 80 \text{ nm}, \text{ EOT} = 0.5 \text{ nm} (2.5 \text{ nm HfO}_2), t_c = 9 \text{ nm}, L_{access} = 15 \text{ nm}$

- Modest subthreshold swing, DIBL \rightarrow explore channel thickness scaling
- Excess OFF current at V_{ds} =0.5 V \rightarrow Band-to-Band Tunneling (BTBT)

Impact of channel thickness scaling

Lin, IEDM 2014

- $t_c \downarrow \rightarrow S \downarrow$ but also $g_{m,max} \downarrow$
- Even at t_c=3 nm, L_{g,min}~40 nm
 → planar MOSFET at limit of scaling

Excess OFF-state current

Transistor fails to turn off:

OFF-state current enhanced with V_{ds}

→ Band-to-Band Tunneling (BTBT) or Gate-Induced Drain Leakage (GIDL) Lin, IEDM 2013

Excess OFF-state current

Planar Regrown-contact InGaAs MOSFET

Lee, EDL 2014

Regrown contact MOSFET:

- Avoids RIE in intrinsic region
- Contacts self-aligned to dummy gate

InGaAs double-gate MOSFET

Zhao, EDL 2014; Vardi, DRC 2014

InGaAs double-gate MOSFET

Long-channel MOSFET characteristics (W_f =12~37 nm):

At sidewall: $D_{it,min} \sim 3 \times 10^{12} \text{ eV}^{-1}.\text{cm}^{-2}$

Vardi, DRC 2014

Vertical nanowire InGaAs MOSFET

Zhao, IEDM 2013

- Nanowire MOSFET: ultimate scalable transistor
- Vertical NW: uncouples footprint scaling from L_q scaling
- Top-down approach based on RIE + digital etch

Trade-off between transport and short-channel effects

 $D\downarrow \rightarrow S\downarrow$ but also $g_m\downarrow$

Si integration: SOI-like InGaAs planar MOSFETs

33

250 ${\ensuremath{\mathsf{r}}}\xspace^{V_{t}}\mbox{=}0$ to 0.8 V in 0.2V step

Si integration: SOI-like InGaAs planar MOSFETs

Si integration: InGaAs Trigate MOSFETs by Aspect Ratio Trapping

Si integration: InGaAs Vertical Nanowire MOSFETs by direct growth

Riel, MRS Bull 2014

InAs NWs on Si by SAE

Björk, JCG 2012

Conclusion: exciting future for InGaAs electronics

